
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 7, 1261-1275 (1987) 

RECENT PROGRESS IN THE DEVELOPMENT AND 
UNDERSTANDING OF SUPG METHODS WITH SPECIAL 

REFERENCE TO THE COMPRESSIBLE EULER AND 
NAVIER-STOKES EQUATIONS*’ 

THOMAS J. R. HUGHES$ 

Division of Applied Mechanics, Durand Building, Stanford University, Stanford. Caltfornia 94305, U.S.A. 

SUMMARY 

SUPG methods were originally developed for the scalar advection-diffusion equation and the incompressible 
Navier-Stokes equations. In the last few years successful extensions have been made to symmetric advective- 
diffusive systems and, in particular, the compressible Euler and Navier-Stokes equations. New procedures 
have been introduced to improve resolution of discontinuities and thin layers. In this paper a brief overview is 
presented of recent progress in the development and understanding of SUPG methods. 
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INTRODUCTION 

This paper gives an account of the current status of ‘SUPG, a class of finite element methods which 
has proven effective on a variety of flow problems. The acronym I coined stands for ‘streamline- 
upwind/Petrov-Galerkin’. The prominence paid the word ‘streamline’ is in retrospect unfortunate 
because for all applications except the scalar advection-diffusion equation, streamlines do not play 
the essential role. The use of the word ‘upwind’ was also a poor choice because of its pejorative 
connotations in some circles and because SUPG really is different from classical upwind methods 
which sacrifice accuracy in favour of stability by adding large doses of artificial diffusivity. SUPG 
combines higher-order accuracy with good stability properties. This has been exhibited in 
numerous calculations and proven mathematically. The term ‘Petrov-Galerkin’ is used these days 
to indicate that the method is any weighted residual method other than the classical Galerkin 
method. The use of Petrov’s name seems to emanate from a reference in Mikhlin’. Based on this 
single contribution, it seems inappropriate to give Petrov the credit (and blame!) for every method 
not specifically Galerkin’s. SUPG is a particular non-classical type of weighted residual method. At 
least Galerkin’s name does seem appropriate: SUPG starts with classical Galerkin formulations 
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and attempts to modify them to achieve improved behaviour. I accept the blame for inventing a 
terrible name for a good method. Some other researchers have proposed different names: Claes 
Johnson prefers ‘streamline diffusion’ and Shohei Nakazawa likes ‘anisotropic balancing 
dissipation’. I think the words ‘diffusion’ and ‘dissipation’ are at least as bad as ‘upwind’. I have 
already indicated why ‘streamline’ is inappropriate and I really do not think ‘anisotropic 
balancing ...’ is any better. I suggest all names so far are more or less equally terrible (with apologies 
to my distinguished friends Claes Johnson and Shohei Nakazawa). For better or worse ‘SUPG 
seems to have stuck. The acronym is acceptable, but not what it stands for. I conjecture that many 
more people know of ‘SUPG than ‘streamline’ ... . Perhaps this is as it should be. When the 
Stanford Research Institute separated from Stanford University it adopted the name SRI 
International. SRI is the name; it is not an acronym for Stanford Research Institute (at least that 
is what everybody says). 

My initial paper on this subject, co-authored by Alec Brooks, was published in 1979 ’. We were 
attempting to put Raithby’s ‘skew-upwind differencing’ ideas into a finite element format. We 
recognized that the procedure lacked a rigorous weighted residual interpretation. The method was 
described for the scalar advection-diffusion equation and incompressible Navier-Stokes 
 equation^^-^. Based on a presentation of A. J. Baker’ in May of 1979, I was aware of the 
connection of the approach with earlier works of Dendy6, Wahlbin’ and Raymond and Garter*. 
Kelly et al. described a similar approach in 1980’. Nakazawa continued along this path in his 
thesis research on coupled thermal-fluid polymer problems and in subsequent papers written in 
collaboration with his colleagues at Swansea”-13. (See also Argyris et al.14 for applications to 
coupled thermal-fluid problems.) In all the early papers treatment of diffusive terms was either 
neglected or incorrect. This problem appeared to be a fundamental impediment, but was simply 
resolved in Hughes and Brooks”. In the context of the scalar advection-diffusion equation, 
our current perception of SUPG is consistent with Reference 15, although SUPG has been 
extended and refined for more general applications. 

From the start, and continuing to this day, Claes Johnson and his colleagues have performed 
penetrating mathematical analyses of SUPG-type methods for various problems (see, e.g., 
References 16-23). In addition, important extensions of the methodology for the incompressible 
problem and unsteady case were made by the Goteborg team (see, e.g., References 18 and 19 
respectively). Although my team’s original contributions to this subject were for the most part 
intuitively based, I have more recently become very much influenced by the mathematical 
approach of Johnson. It seems to me now that significant progress in new areas requires at least 
a rudimentary appreciation of the mathematical underpinning of the methodology. 

An outline of the subsequent sections of this paper follows. In Section 2 a summary of what is 
known about SUPG for scalar advection-diffusion problems is presented. Recent extensions, such 
as the ‘discontinuity-capturing operator’, are described. Brief mention is made in Section 3 of new 
developments for the incompressible problem. In Section 4 the current state of affairs for symmetric, 
coupled, multidimensional advective-diffusive systems is described. Attention is focused on the 
compressible Euler and Navier-Stokes equations in Section 5. It is shown that the concept of 
entropy variables plays a fundamental role in extending SUPG to systems of this type. Conclusions 
are drawn in Section 6. 

2. SCALAR ADVECTION-DIFFUSION EQUATION 

Consider the scalar advection-diffusion equation 

4,t + a.V& = V.(lcV+) + f, 
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where #J = #J(x, t )  is the dependent variable (e.g., the temperature), XEQ c Rd is the spatial domain 
of the problem, d is the number of space dimensions, t is time, a is the velocity, lc is the diffusivity and 
f is the volumetric source term. An inferior comma denotes partial differentiation and V denotes 
the spatial gradient operator. In what follows, to simplify the discussion, we will assume the flow is 
divergence-free, i.e., 

(2) V - a  = 0 

and lc is constant. These assumptions may be dropped without essential alteration to the 
conclusions drawn. 

If lc > 0, we have the parabolic case; if lc = 0, we have the hyperbolic case. The greatest challenge 
numerically is created by the case in which K is positive but 'small' in the non-dimensional sense 
that the element Peclet number is large, viz., 

lalh a =  max - > 1, 
2lc (3) 

where h is the finite element mesh parameter and la1 denotes the length of a. 

diffusive-flux Neumann data: 
Well posed boundary conditions for the parabolic case consist of, for example, Dirichlet and 

#J=g on rs, (4) 
n*lcV#J=h on rh, (5 )  

where the boundary of Q, denoted by r, admits the decomposition 

r = r,ur,, 
0 = rgnrh> (7) 

and n is the unit outward normal vector to r, and g and h are the given data. In the unsteady 
case an initial condition #J(x, 0), XEQ, need also be specified. For a while we will restrict our 
attention to the steady case, but later on return to recent developments applicable to the unsteady 
problem. 

2.1. Classical Galerkin finite element method 

In the finite element field the Galerkin variational formulation has dominated over the years. To 
define it we need to introduce a set of trial solutions, S", and a set of weighting functions, V". A 
distinguishing feature of the Galerkin method is that Sh and V h  are composed of the same class of 
functions, up to inhomogeneous Dirichlet boundary data. The Galerkin formulation of the 
advection-diffusion equation is given as follows. Find #"'S" such that for all w"EV", 

B(W", # J h )  = L ( W h ) ,  (8) 
where 

B(w", # J h )  = (w"a.V#J" + VW"*IC V#J")  dQ, 
Jfi 

L(w") = wh f dQ + Jrh whh d r .  

It is assumed that all trial solutions satisfy any Dirichlet conditions present. The diffusive-flux 
Neumann condition arises 'naturally' as a consequence of satisfaction of (8). 
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2.2. Error analysis 

For any method of the form (8) we would like stability (also referred to as coerciuity), 

B ( W h ,  W h )  > c I I IWhl 112, (1 1) 

B(wh, e )  = 0, (12) 

where c is a constant and 1 1 1 . 1 1 1  is some norm, and consistency, 

where e = $h - 4 is the error. Stability, consistency and mild continuity requirements on the 
bilinear form B ( . , . )  are all that is necessary to prove convergence in the 1 1 1 . 1 1 1  norm, viz., 

IllelII G C(4)hr? (13) 
where r = r(k) increases with k, the order of complete polynomial contained in each element. 
Consistency is automatic for weighted residual methods in which the exact solution 4 also satisfies 
the variational equation 

B ( W h ,  4)  = L ( W h ) .  (14) 
Equation(12) follows from (8), (14) and the linearity of B ( . ; )  with respect to the second 

argument. Galerkin’s method is a weighted residual method and thus consistency is assured. 
However, stability is another matter. To see this in a simple setting, assume rh = 0 and we have 
homogenous Dirichlet boundary conditions. A direct calculation reveals 

B(Wh, W h )  = K 1 1  VWh 112, 

IlVell = O((1 + .)hk). 

(15) 

(16) 

where 11.11 denotes the L2(R) norm. This leads to an error estimate of the form 

The appearance of the element Peclet number a in the error estimate is a direct consequence of K 

being the stability constant in (15). In the diffusion-dominated limit, a is small and (16) represents 
the usual optimal-order error estimate. On the other hand, in the advection-dominated case in 
which a is large, the appearance of a in (16) is a sign of trouble. In practice, spurious oscillations 
emanate from sharp layers and globally pollute numerical results (schematically illustrated in 
Figure 1). Similar phenomena occur in central finite difference approximations and are attributed 
to the weak coupling of odd- and even-numbered nodal equations. From a functional analysis 
standpoint, the problem derives from the poor stability provided by the ‘small’constant K in (15). 

Figure 1.  



SUPG METHODS 1265 

2.3. Classical artijicial diffusion and upwind methods 

In order to improve upon the poor stability properties of central difference methods, artificial 
diffusion and upwind difference methods were created. Analogous finite element procedures can be 
developed by adding an artificial diffusion term to the Galerkin formulation: 

where 
E ( W ” ,  4”)  = L ( W h ) ,  

E(w“, 4“)  = B(w”, 4h)  + 
and R is an O(h) artificial diffusivity coefficient. Stability is improved by the added term. Under the 
assumptions which led to (15) we now have 

Now when K is ‘small’, the R term, which is much larger, comes to the rescue, providing the 
necessary dose of stability. Unfortunately, the consistency property, (12), is now violated because 
(1 7) is no longer a weighted residual method, ie., the exact solution does not satisfy (17). The upshot 
is that the method is no better than first-order accurate independent of the order of complete 
polynomial present in the finite element interpolations. Thus stability is achieved at the expense 
of accuracy and typical results exhibit overly diffuse behaviour (see Figure 2 for a schematic 
illustration). It may be concluded that neither the Galerkin method nor the classical artificial 
diffusion/upwind method possesses the requisite mathematical properties necessary for achieving 
good behaviour in practice. Much research effort has gone into the development of alternative 
procedures with the aim of simultaneously attaining good stability and accuracy properties. 

E ( W h ,  W h )  = 11 ( K  + R)”2VWh 1 1  2 .  (19) 

2.4. Streamline-upwindlPetrov-Galerkin method ( ‘SUPG’) 

SUPG may also be viewed as a modification to the classical Galerkin method. The physical idea 
is to increase control over the advective-derivative term. This can be done by adding an artificial 
diffusion term which acts only in the streamline direction. The key idea in SUPG, which 
distinguishes it from classical streamline-upwind difference methods, for example, is that this 
stabilizing control can be introduced within a weighted residual format, thus maintaining 
consistency. The method is defined by 

where 
B,(Wh, 4h)  = L,(Wh), (20) 

B,(w”, dh)  = B(w“, g5h) + sa-Vwh(a*V4h - V - K  V+”)dS1, (21) 

Figure 2. 
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Re c R is the domain of the eth element, n,, is the number of elements and z is a locally defined 
parameter having dimensions of time which we refer to as the intrinsic time scale. Note that the 
additional terms are integrals over element interiors. Furthermore, consistency holds for all z, i.e., 

B,(wh, e )  = 0. (23) 
At the same time stability is enhanced in that if locally z = O(h/lal) in the advection-dominated 
case, and T = O ( ~ ’ / I C )  in the diffusion-dominated case, then*: 

advection-dominated case 

llell < ~ ( c j ) h ~ + ( ” ~ ) ,  (25) 

Ila-Ve 11 < c ( 4 ) h k ;  (26) 

diffusion-dominated case 

All are optimal except (25) which is near optimal (‘gap l/2’). Furthermore, Johnson and his 
colleagues have derived localization results for rough solutions possessing sharp internal and 
boundary layers. These results show that the above error estimates hold on R modulo a small 
neighborhood of the layers. Consequently, SUPG is seen to be a robust methodology and one 
possessing higher-order accuracy (the order of accuracy depends only on k, as may be seen from 

By virtue of the fact that SUPG is a higher-order accurate linear method, monotone 
approximations of sharp layers are not possible. Thus some overshoot and/or undershoot will 
appear in these circumstances. The localization results guarantee that these will not globally 
pollute the solution as is the case of the classical Galerkin method for which no localization results 
are possible. These observations are confirmed by numerical experience (see Figure 3 for a 
schematic representation of response). The only way to simultaneously achieve high-order 
accuracy and smooth approximations to sharp layers is to introduce non-linear mechanisms. A 
particular variant of this theme will be described subsequently. 

The appellation ‘streamline-upwind/ ...’ derives from the following facts. The difference stencils 
produced by the method are centred about points shifted upwind along, and aligned with, 
streamlines. When written in Euler-Lagrange form the weighting function on element interiors 
involves the 5-term, viz., 

(25)-(28))* 

+ diffusive-flux inter-element continuity and boundary terms, (29) 

(30) 
where 

I.?lh = wh + za.V4h. 

* Functional analysis techniques and exact solutions of difference equations for simple model problems yield results 
which are in agreement regarding the form of T. The ‘best’ computational formula for T is only known for very simple 
cases. However, effective formulae are available for general situations. See Reference 24 for our current thinking on this 
matter. A deeper understanding of the process for selecting T would be welcome. 
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Figure 3. 

The diffusive-flux inter-element continuity and boundary terms are the same as for the classical 
Galerkin method. Petrov's name comes in whenever G h  # wh, although the reason for this 
attribution still seems to us obscure. 

SUPG first appeared in the form (20), (21) in Reference 15. The continuity requirements of trial 
and weighting functions and whether or not SUPG is a conforming or non-conforming method 
have caused considerable confusion among individuals who do not understand the mathematical 
basis of it: SUPG requires only Co-continuous finite element interpolations and it is correctly 
classified as a conforming method. 

Raithby's difference approach (References 25,26) would amount to ignoring the diffusion and 
source terms in the element integrals in (21) and (22) respectively. This violates the weighted 
residual recipe and leads to pathological behaviour numerically (see References 15 and 27). 

2.5. Discontinuous Galerkin 

The discontinuous Galerkin method is the only other finite element method which has been 
mathematically analysed to the extent SUPG has. It seems to have been originally conceived by 
Reed and in the context of neutron transport problems. The mathematical analysis of the 
method commenced in Lesaint and R a ~ i a r t ~ ~  and was continued and improved upon by Johnson 
and his colleagues (see, e.g., Reference 18). In its primitive form, the discontinuous Galerkin 
method is restricted to the case of pure advection (i.e., ic = 0). Trial solutions and weighting 
functions are taken to be discontinuous across inter-element boundaries. Continuity of flux is 
enforced weakly by terms appended to the classical Galerkin bilinear form. The method is given by 

B,(Wh, 4h) = L(Wh), 
where 

The inflow boundary ofelement e, denoted by r&,w, is defined to be that part of re where n'a < 0. 
This idea and the meaning of the + and - subscripts are schematically depicted in Figure 4. 

The discontinuous Galerkin method shares with SUPG the same error estimates and 
localization results. The generalization to hyperbolic systems requires the definition of a numerical 
flux vector on inter-element boundaries which is a function of the + and - state vectors. Several 
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Figure 4. 

Figure 5 .  

suitable candidates emanate from the finite difference literature such as the well known Godunov 
and Osher numerical fluxes. The case of piecewise constants (i.e., k = 0) seems essentially identical 
to what is referred to as the ‘finite volume method’. Chavent, Jaffre and their colleagues have 
been actively pursuing the development of discontinuous Galerkin methods for petroleum 
reservoir simulation (see, e.g., References 30 and 31). The generalization to cases in which diffusion 
is present requires mixed finite element approximations and has not been actively pursued as 
far as we are aware. A main practical impediment to the adoption of discontinuous Galerkin 
methods is that for k > 1 the dimensions of trial and weighting function spaces become enormous. 
This is illustrated schematically for bilinear quadrilaterals in Figure 5 .  The situation is worse 
for triangles and becomes even more unfavourable in three dimensions for hexahedra and 
tetrahedra (e.g., the ratio of degrees of freedom for linear discontinuous tetrahedra to linear 
continuous tetrahedra is 20!). 

2.6. Space-time finite element formulations 

Johnson and colleagues have proposed using discontinuous Galerkin in time with either SUPG 
or discontinuous Galerkin in space (see, e.g., Reference 18). This leads to fully discrete implicit 
systems in which the solution in the space-time slab R x ] t n , t n = l [  depends only upon the 
previously obtained solution at time tn-. Error estimates of the form (25)-(28) hold as well for this 
case, where h is now a space-time mesh parameter. This is a major contribution which should 
forever dispel the prevalent myth in finite difference circle that somehow finite elements are not 
appropriate for hyperbolic problems. 

2.7. Discontinuity capturing 

In order to improve upon the ability of SUPG to smoothly resolve sharp layers, a discontinuity- 
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Figure 6. 

capturing operator was introduced by Hughes et 
is written as (cf. Reference 32) 

In this case the modified weighting function 

G~ = wh -+ T,a-Vwh + r2alI-Vwh (33) 
where at1 is the projection of a on VcPh, i.e., 

(See Figure 6.) This method is seen to be non-linear in that a,, = aii(Vdh). The interaction of this 
weighting function with the advection term in the residual may be decomposed into three 
contributions: 

Galerkin term streamline operator 

+ vd-5 ,aIla;f vq5h + ... . (35) 

a.Vcjh = alI*V$Jh (36) 

discontinuity-capturing operator 

In obtaining (35) we have used the result 

which follows from (34). The streamline matrix aaT is a rank-1 positive-semidefinite matrix 
which acts only in the streamline direction. The discontinuity-capturing matrix a,, af is likewise 
a rank-1 positive-semidefinite matrix which acts only in the direction of the discrete solution 
gradient and thus provides an ingredient with the potential for controlling spurious oscillations 
in the discrete solution. Stability is clearly enhanced by the presence of the discontinuity-capturing 
term, and concomitantly consistency is maintained (see (23)). Nevertheless, due to the non-linear 
nature of discontinuity capturing its error analysis is an open problem. See Tezduyar and Park33 
for refinements and Johnson and Szepessy22 for space-time generalizations. The generalization 
of the discontinuity-capturing operator to systems has proven to be an essential ingredient for 
accurately capturing shock waves in our formulation of the compressible Euler and Navier-Stokes 
equations (see Section 2.4). 

Remark. The inspiration behind the development of the discontinuity-capturing operator 
emanates from finite difference ideas of Davis.34 
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3. INCOMPRESSIBLE FLOWS 

SUPG was originally developed as a means of improving upon the classical Galerkin formulation 
of the incompressible Navier-Stokes equations. The advection-diffusion equation was primarily 
used as a convenient model equation because of its linearity and greater simplicity. The original 
SUPG formulations intuitively adopted analogous weighting functions to those developed for the 
advection-diffusion model problems. Practical calculations exhibited good accuracy and a greater 
degree of robustness than the classical Galerkin formulation (see, e.g., Brooks and Hughes”). 
From the mathematical point of view one needs to account for the pressure gradient in the 
weighting function as shown by Johnson and Saranen,” who analyse the fully discrete case for 
divergence-free basis functions. H a n ~ b o ~ ~  has obtained good numerical results with this 
formulation. Progress has recently been made without the divergence-free hypothesis (Johnson, 
private communication, 1986). A convergent formulation of the Stokes problem has recently been 
developed in which a pressure gradient term appears in the weighting function for the momentum 
residual (see Hughes et ~ 1 . ~ ~ ) .  In this formulation it is not necessary to satisfy the BabuSka- 
Brezzi condition and, in fact, all combinations of continuous velocity and pressure interpolations 
are convergent. See Brezzi and Douglas3’ for further analysis of the method proposed in 
Reference 36 and generalizations. 

SUPG-type methods for incompressible problems have now gone beyond the original 
aspiration of simply stabilizing convective terms, as evidenced by the reference cited. 

4. ADVECTIVE-DIFFUSIVE SYSTEMS 

Physical advective-diffusive systems are usually written in the form 

U,[ + A - V U  = V*(K VU) + f, (37) 
where 

U =  I!’], V U =  {:’I}, .=[A1], Ad 

u,d 

A - V U  = A,U,, + . . . + AdU,d, 
urn 

A 

V-(K VU) = C (KijU,j),i, 
i , j =  1 

where each Ai and Kij is an m x m matrix. We refer to A - V U  as the generalized advection term 
and V.(K VU) as the generalized diffusion term. For example, the compressible Navier-Stokes 
equations can be written in the form (37), where U represents the conservation variables. 

For many physical systems a change of variables U = U(V) exists such that (37) can be written as 

AoV,, + i . V V  = V.(gVV) + F,  (42) 
where the & are symmetric (1 < i G d ) ,  A,, is symmetric and positive-definite and k is symmetric 
and positive-semidefinite. If = 0, then (42) is called a symmetric hyperbolic system or a Friedrichs’ 
system (e.g., the compressible Euler equations). If k is positive-definite, then (42) is called a 
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symmetric parabolic system. If g is positive-semidefinite, but not positive-definite, then (42) is called 
a symmetric incompletely parabolic system (e.g., the compressible Navier-Stokes equations). 

For linear systems of the form (42), a generalization of SUPG is available. For the hyperbolic 
case, Johnson et al.' derived error estimates for the space-time formulation analogous to (25), (26) 
and localization results. Similar results also hold for discontinuous Galerkin.I8 The parabolic case, 
accounting for arbitrary dominance of advection or diffusion in the various 'modes' of the system, 
turns out to be delicate. The generalization of SUPG for the steady case is considered by Hughes 
and Mallet38 and the space-time formulation for the unsteady case is analysed in Hughes et 
At the time of this writing, what constitute well posed boundary conditions for the general 
incompletely parabolic case are not known. Once these are established, it is anticipated that the 
methods of References 38 and 39 will suffice to establish convergence and error estimates. 

5. COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS 

Assuming sufficient smoothness, the compressible Navier-Stokes equations can be written in 
quasi-linear form (37) in terms of conservation variables 

u={ ;}* (43) 

where p is the density, u is the velocity vector and e is the total energy. Classical L2(52) stability 
estimates for systems of the type (37) are derived by simply taking the dot product of (37) with U 
(see, e.g., Courant and Hilbert4'). In the present case this does not even make dimensional sense, as 
may be seen from the first term: 

(44) 
I d  
--[cp2(1 +lu12+e2)] 2 +.... 
2dt  

This suggest that the L2(52) inner product structure is inappropriate for the compressible 
Navier-Stokes equations and consequently so would be a classical-type Galerkin formulation. 

??? 

Remark. For attempts at developing SUPG-type methods within this framework see 
References 32, 41 and 42. 

5.1.  Entropy variables 

D ~ t t ~ ~  and Hughes et Let 
Entropy variables have been investigated by G o d ~ n o v , ~ ~  Harter~,~' T a d m ~ r , ~ ~  

H = H(U) = - ps, 
where 

s = In [ :( :)'I 
(45) 

is the non-dimensional entropy, p is the pressure, a subscript zero represents a reference value 
and y is the ratio of specific heats (assumed constant). Entropy variables are defined by 

v = aH/au. (47) 
By virtue of the fact that H is a convex function of U, (47) leads to a well defined change of 
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variables, U = U(V). Employing this change of variables in (37) results in form (42) along with 
the stated symmetry and definiteness properties of the arrays. Furthermore, taking the dot 
product of (42) with V not only makes dimensional sense, but additionally makes physical sense 
in that the Clausius-Duhem inequality, or second law of thermodynamics, ensues: 

0 = V.(AoV,, + Z-VV - V.(EVV) - F )  

= [ - (pq),, - V.(pqu) + c,VV.(KVV) - v . (  ;) + $1, 
cv 

implying 

where c, is the specific heat at constant volume, q = c,s is the thermodynamic entropy, 6J is 
the temperature, q is the heat flux vector and r is the radiation per unit mass. This is the basic 
non-linear stability condition for the compressible Navier-Stokes equations. An important result 
follows: a classical Galerkin formulation inherits the entropy production p r ~ p e r t y . ~ '  This can be 
seen from 

nel 

0 = C Wh*[AoV!', + Z.VVh - V*(KVVh) - F] dR 
e =  1 [ae 

+ continuity and boundary terms. (50) 

Replacing W" by Vh in (50) and proceeding as in (48), (49) leads to a global statement of (49) in 
terms of the discrete solution V". This holds for the fully discrete space-time formulation as well as 
the semidiscrete t-continuous formulation. This is a good start, but, as is apparent from linear 
analysis, not enough. Another way of appreciating this fact is to consider the compressible Euler 
equations and assume Co-continuous basis functions are employed. Then proceeding as indicated 
above yields 

0 = j a  Vh.(A,V~, + A-VVh)dR 

In words, entropy is always conserved*, even in the presence of shocks in the exact solution, 
making convergence in this case impossible. To correct this and other deficiencies of the classical 
Galerkin method, a generalized SUPG-type formulation with discontinuity capturing may be 
adopted. 

Remark. Mazet and colleagues have developed a finite element method for hyperbolic 
conservation laws based upon extremizing the rate of entropy production (see References 49-52 
for details). 

5.2. SUPG 

We give here only a brief sketch of the essential features of our SUPG-type formulation for 

* For subsonic flows, entropy conservation is ofcourse appropriate. This is an interesting property of the Galerkin method 
which should be exploitable in practice. 
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the compressible Euler and Navier-Stokes equations. The original sources may be consulted 
for more details (see References 38, 39, 48, 53-56). The variational equation takes the form 

ne i  

0 = 1 Wh.(AoV!t + A.VVh - V.(RVVh) - F ) d a  + continuity and boundary terms, (52) 
e =  1 [Qe 

where 

W h  = Wh + T , * V W h  + T,*VWh, (53) 
in which TI is the generalized ‘streamline’ matrix for systems (in fact, it has nothing to do with 
streamlines; see Reference 38) and T, is the generalized discontinuity-capturing matrix for systems. 
The latter matrix always has rank 1 and is proportional to the projection of T, on the direction VVh 
with respect to the Riemannian metric A, (see Reference 55). Note that (53) applies to any system, 
linear or non-linear, that can be expressed in the form (42). The fully discrete variational equation is 
identical except we need to work on space-time slabs and add the weakly enforced t-continuity 
term (see References 18 and 39). Johnson and Szepessy have made progress analysing SUPG in the 
non-linear hyperbolic case (see References 20-22). They show in Reference 22 that if the finite 
element solutions converge as k --f 0, then they converge to an entropy solution. For Burgers’ 
equation in one dimension they establish the stronger result that if the finite element solutions 
remain uniformly bounded as k + 0, then convergence to an entropy solution is attained. These 
results hold with or without the discontinuity-capturing term. However, superior numerical results 
are obtained when it is employed.22 The mathematical results of Johnson and Szepessy have thus 
made precise the assertion that entropy variables preserve weak solutions. We have obtained good 
numerical results with our approach on a variety of compressible Euler and Navier-Stokes 
problems (see, e.g., References 53, 54, 56-58). 

6. CONCLUSIONS 

The numerical solution of many practical problems of fluid flow is still far from a reality. Improved 
schemes are needed and this topic is likely to engage the attention of researchers for quite some 
time. SUPG-type methods have been successfully applied to a variety of flow problems including 
scalar advection-diffusion processes and incompressible viscous flows. A theory has evolved which 
is applicable to general linear, coupled, multidimensional advective-diffusive systems and non- 
linear systems possessing an entropy function. Steady as well as unsteady space-time SUPG 
methods exist of all orders of accuracy. At the same time, good stability properties are incorporated 
in SUPG. An impressive number of mathematical results have already been derived and progress 
continues to be made. 
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